Studies on the base excision repair (BER) complex in Pyrococcus furiosus

Author:

Kiyonari Shinichi12,Tahara Saki1,Uchimura Maiko1,Shirai Tsuyoshi34,Ishino Sonoko12,Ishino Yoshizumi12

Affiliation:

1. Department of Genetic Resources Technology, Kyushu University, 6-10-1 Hakozaki, Fukuoka-shi, Fukuoka 812-8581, Japan

2. BIRD-Japan Science and Technology Agency, 6-10-1 Hakozaki, Fukuoka-shi, Fukuoka 812-8581, Japan

3. Department of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama-shi, Shiga 526-0829, Japan

4. BIRD-Japan Science and Technology Agency, 1266 Tamura-cho, Nagahama-shi, Shiga 526-0829, Japan

Abstract

We have been studying the functions of PCNA (proliferating-cell nuclear antigen) for the assembly and reassembly of the replisome during replication fork progression. We have identified the functional interactions between PCNA and several proteins involved in DNA replication and repair from Pyrococcus furiosus. We recently reported that the activity of UDG (uracil–DNA glycosylase) in P. furiosus (PfuUDG) is stimulated by PCNA (PfuPCNA) in vitro, and identified an atypical PCNA-binding site, AKTLF, in the PfuUDG protein. To understand further the function of the complex in the BER (base excision repair) process, we investigated the AP (apurinic/apyrimidinic) endonuclease, which can process the BER pathway after uracil removal by UDG. Interestingly, one candidate ORF (open reading frame) for the AP endonuclease was found in the operon containing the gene encoding UDG in the P. furiosus genome. However, this ORF did not exhibit any activity. Instead, we identified the AP endonuclease activity from the other candidate gene products, and designated the protein as PfuAP. We discovered a physical interaction between PfuAP and PfuPCNA, suggesting the formation of a BER complex in one of the repair systems in P. furiosus.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3