Maurocalcine interacts with the cardiac ryanodine receptor without inducing channel modification

Author:

Altafaj Xavier1,France Julien1,Almassy Janos2,Jona Istvan2,Rossi Daniela3,Sorrentino Vincenzo3,Mabrouk Kamel4,De Waard Michel1,Ronjat Michel1

Affiliation:

1. iRTSV/CCFP CEA Grenoble INSERM U836 Institut des Neurosciences Grenoble GIN, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France

2. Department of Physiology, Research Center of Molecular Medicine, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary

3. Molecular Medicine Section, Department of Neuroscience, University of Siena, Siena, Italy

4. Universités D'Aix-Marseille 1, 2 et 3 CNRS-UMR 6517, Chimie, Biologie et Radicaux libres, Case 521Av.Esc. Normandie Niemen 13397 Marseille Cédex 20, France

Abstract

We have previously shown that MCa (maurocalcine), a toxin from the venom of the scorpion Maurus palmatus, binds to RyR1 (type 1 ryanodine receptor) and induces strong modifications of its gating behaviour. In the present study, we investigated the ability of MCa to bind to and modify the gating process of cardiac RyR2. By performing pull-down experiments we show that MCa interacts directly with RyR2 with an apparent affinity of 150 nM. By expressing different domains of RyR2 in vitro, we show that MCa binds to two domains of RyR2, which are homologous with those previously identified on RyR1. The effect of MCa binding to RyR2 was then evaluated by three different approaches: (i) [3H]ryanodine binding experiments, showing a very weak effect of MCa (up to 1 μM), (ii) Ca2+ release measurements from cardiac sarcoplasmic reticulum vesicles, showing that MCa up to 1 μM is unable to induce Ca2+ release, and (iii) single-channel recordings, showing that MCa has no effect on the open probability or on the RyR2 channel conductance level. Long-lasting opening events of RyR2 were observed in the presence of MCa only when the ionic current direction was opposite to the physiological direction, i.e. from the cytoplasmic face of RyR2 to its luminal face. Therefore, despite the conserved MCa binding ability of RyR1 and RyR2, functional studies show that, in contrast with what is observed with RyR1, MCa does not affect the gating properties of RyR2. These results highlight a different role of the MCa-binding domains in the gating process of RyR1 and RyR2.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3