Affiliation:
1. International Centre for Genetic Engineering and Biotechnology, NII Campus, Shahid Jeet Singh Marg, New Delhi 110 067, India
2. Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92717, U.S.A.
Abstract
An RNA polymerase activity has been purified from pea (Pisum sativum) chloroplast extracts with a distinct transcriptional specificity for a chloroplast messenger gene. This activity (ms-RNA pol) differs from the pea RNA polymerase preparation reported by Sun, Shapiro, Wu & Tewari [(1986) Plant Mol. Biol. 6, 429-439], which specifically transcribes only the rRNA gene (rb-RNA pol). The specificity of transcription has been assessed by the synthesis in vitro of discrete transcripts of predicted sizes using cloned promoter regions of the chloroplast psbA and 16 S rRNA genes. The ms-RNA pol preparation, with polypeptides ranging in apparent molecular mass from 22 to 180 kDa, correctly initiates transcription from recombinant plasmids containing the psbA promoter and does not support 16 S rRNA promoter-directed transcription. The two activities differ also in their response to Mn2+ ions. To investigate whether the two transcriptional activities share common functional polypeptides, monoclonal antibodies were developed against the rb-RNA pol preparation. Three clones were selected on the basis of their ability to inhibit transcription in vitro of the 16 S rRNA gene by rb-RNA pol. The antibodies from these clones independently recognized three polypeptides with molecular masses of 27, 90 and 95 kDa on immunoblots. Antibodies cross-reacting with the 90 kDa polypeptide completely eliminated the specific retardation of an end-labelled 16 S rRNA promoter fragment in a mobility-shift assay, whereas the antibodies against the 95 kDa polypeptide resulted in the formation of a ternary complex (enzyme-DNA-antibody). The antibodies cross-reacting with the 27 kDa polypeptide, however, did not alter the mobility of the retarded DNA-enzyme complex on the gel. These antibodies also inhibited transcription in vitro of the psbA gene by ms-RNA pol and recognized polypeptides of identical molecular masses in the ms-RNA pol. These results show that the three polypeptides are functional components of the chloroplast transcriptional complex and appear to be involved in the transcription of both rRNA and mRNA genes. Transcriptional specificity is probably conferred by ancillary transcription factor(s) which remain to be identified.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献