The effect of lysine on gluconeogenesis from lactate in rat hepatocytes

Author:

Cornell Neal W.1,Lund Patricia1,Krebs Hans A.1

Affiliation:

1. Metabolic Research Laboratory, Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford OX2 6HE, U.K.

Abstract

1. In freshly prepared isolated rat liver cells there is a lag in gluconeogenesis from lactate. The magnitude of the lag increases with increasing lactate concentration. 2. The lag is virtually abolished by lysine. 3. A few other amino acids (tyrosine, arginine, asparagine, ornithine) and NH4Cl had effects similar to, but less pronounced than, lysine during the early stage of incubation. Lysine was unique in accelerating gluconeogenesis beyond the lag period. 4. The effects of the accelerators are not additive. 5. Glycine, serine, threonine, cysteine, tryptophan and histidine at 2mm markedly inhibit (>20%) gluconeogenesis from lactate. 6. Oleate, which promotes gluconeogenesis from lactate by supplying acetyl-CoA required for the pyruvate carboxylase reaction, had no effect on the lag, yet oleate oxidation showed no lag. 7. Preincubation of cells decreased the lag and decreased the magnitude of the lysine effect. 8. Pyruvate (added at 1mm to give an initial [lactate]/[pyruvate] ratio of 10) also abolished the lag and decreased the lysine effect by about 50%. 9. Lysine reversed the inhibition by ethanol of gluconeogenesis from lactate. 10. All accelerators increased the rate of re-oxidation of cytosolic NADH as shown by a rapid re-adjustment of the [lactate]/[pyruvate] ratio on addition of 10mm-lactate. 11. The accelerated rates of gluconeogenesis are associated with an increased formation of aspartate and glutamate and especially alanine. 12. The existence of the lag period can be explained on the basis of the fact that the accumulation of pyruvate during the lag diverts oxaloacetate from gluconeogenesis to malate formation, i.e. that the re-oxidation of cytosolic NADH takes precedence over gluconeogenesis. This means that much oxaloacetate formed by the pyruvate carboxylase reaction has to be transferred twice from the mitochondria to the cytosol by the aspartate shuttle. Under these conditions the operation of the shuttle limits the rate of gluconeogenesis from lactate. Lysine and other accelerators may increase the effectiveness of the shuttle by providing components of the aspartate aminotransferases involved. The question of why lysine specifically accelerates gluconeogenesis beyond the lag period is discussed.

Publisher

Portland Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3