Affiliation:
1. Institute of Pharmacology, Waehringerstrasse 13A, University of Vienna, A-1090 Vienna, Austria
2. Institute of Pharmaceutical Chemistry, Althanstrasse 14, University of Vienna, A-1090 Vienna, Austria
Abstract
The novel Ca2+-mobilizing second messengers cADPr (cyclic ADP-ribose) and NAADP (nicotinic acid–adenine dinucleotide phosphate) are both synthesized by ADP-ribosyl cyclases. Using HSR (heavy sarcoplasmic reticulum) fractions from rabbit skeletal muscle, NAADP-induced Ca2+ release was observed. In the present paper, we show in HSR membranes the formation of authentic cADPr, cGDPr (cyclic GDP-ribose) and NAADP. The cyclization reaction to form cADPr and cGDPr as well as the base-exchange reaction to form NAADP were strictly dependent on pH. Although the formation of cGDPr is optimized at pH 6, the synthesis of NAADP was most pronounced at a pH below 5. A novel regulation mechanism is provided for nicotinic acid, the co-substrate for NAADP synthesis. Nicotinic acid had virtually no influence on the cyclization reaction, but increased the affinity of NADP at an acidic pH and had the opposite effect at alkaline pH. Nicotinamide, the side product of cADPr synthesis, is an inhibitor of the cyclization reaction (IC50, 0.7±0.1 mM) and was 30-fold more potent at suppressing the base-exchange reaction. Although the synthesis of NAADP was highly sensitive to nicotinamide inhibition, this was not via a competition with the nicotinic-acid-binding site. In contrast with the ecto-ADP-ribosyl cyclase (CD38), the cyclization and base-exchange reaction of the skeletal muscle isoform was inhibited by Cu2+ and Zn2+, while other bivalent cations such as Ca2+, Mg2+ and Mn2+ had virtually no effect. These findings allow for the prediction of a novel ADP-ribosyl cyclase isoform in skeletal muscle HSR, other than CD38. Hence the enzymic prerequisite for cADPr- and NAADP-mediated Ca2+ signalling is present.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献