Identification of the anti-inflammatory protein tristetraprolin as a hyperphosphorylated protein by mass spectrometry and site-directed mutagenesis

Author:

Cao Heping123,Deterding Leesa J.4,Venable John D.5,Kennington Elizabeth A.12,Yates John R.5,Tomer Kenneth B.4,Blackshear Perry J.12

Affiliation:

1. Laboratories of Neurobiology and Signal Transduction and Office of Clinical Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, U.S.A.

2. Departments of Biochemistry and Medicine, Duke University Medical Center, Durham, NC 27710, U.S.A.

3. Nutrient Requirements and Functions Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Building 307C, Room 215, BARC-East, 10300 Baltimore Avenue, Beltsville, MD 20705, U.S.A.

4. Laboratory of Structural Biology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, U.S.A.

5. Department of Cell Biology, Scripps Research Institute, La Jolla, CA 92037, U.S.A.

Abstract

Tristetraprolin (TTP) is a zinc-finger protein that binds to AREs (AU-rich elements) within certain mRNAs and causes destabilization of those mRNAs. Mice deficient in TTP develop a profound inflammatory syndrome with erosive arthritis, autoimmunity and myeloid hyperplasia. Previous studies showed that TTP is phosphorylated extensively in intact cells. However, limited information is available about the identities of these phosphorylation sites. We investigated the phosphorylation sites in human TTP from transfected HEK-293 cells by MS and site-directed mutagenesis. A number of phosphorylation sites including Ser66, Ser88, Thr92, Ser169, Ser186, Ser197, Ser218, Ser228, Ser276 and Ser296 were identified by MS analyses using MALDI (matrix-assisted laser-desorption–ionization)-MS, MALDI-tandem MS, LC (liquid chromatography)–tandem MS and multidimensional protein identification technology. Mutations of Ser197, Ser218 and Ser228 to alanine in the human protein significantly increased TTP's gel mobility (likely to be stoichiometric), whereas mutations at the other sites had little effect on its gel mobility. Dephosphorylation and in vivo labelling studies showed that mutant proteins containing multiple mutations were still phosphorylated, and all were able to bind to RNA probes containing AREs. Confocal microscopy showed a similar cytosolic localization of TTP among the various proteins. Ser197, Ser218 and Ser228 are predicted by motif scanning to be potential sites for protein kinase A, glycogen synthase kinase-3 and extracellular-signal-regulated kinase 1 (both Ser218 and Ser228) respectively. The present study has identified multiple phosphorylation sites in the anti-inflammatory protein TTP in mammalian cells and should provide the molecular basis for further studies on the function and regulation of TTP in controlling pro-inflammatory cytokines.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3