Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions

Author:

Kizuka Yasuhiko1,Nakano Miyako2,Kitazume Shinobu1,Saito Takashi3,Saido Takaomi C.3,Taniguchi Naoyuki1

Affiliation:

1. Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN–Max Planck Joint Research Centre for Systems Chemical Biology, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

2. Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8530, Japan

3. Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

Abstract

β-Site amyloid precursor protein-cleaving enzyme-1 (BACE1) is a protease essential for amyloid-β (Aβ) production in Alzheimer's disease (AD). BACE1 protein is known to be up-regulated by oxidative stress-inducing stimuli but the mechanism for this up-regulation still needs to be clarified. We have recently found that BACE1 is modified with bisecting N-acetylglucosamine (GlcNAc) by N-acetylglucosaminyltransferase-III (GnT-III, encoded by the Mgat3 gene) and that GnT-III deficiency reduces Aβ-plaque formation in the brain by accelerating lysosomal degradation of BACE1. Therefore, we hypothesized that bisecting GlcNAc would stabilize BACE1 protein on oxidative stress. In the present study, we first show that Aβ deposition in the mouse brain induces oxidative stress, together with an increase in levels of BACE1 and bisecting GlcNAc. Furthermore, prooxidant treatment induces expression of BACE1 protein in wild-type mouse embryonic fibroblasts (MEFs), whereas it reduces BACE1 protein in GnT-III (Mgat3) knock-out MEFs by accelerating lysosomal degradation of BACE1. We purified BACE1 from Neuro2A cells and performed LC/ESI/MS analysis for BACE1-derived glycopeptides and mapped bisecting GlcNAc-modified sites on BACE1. Point mutations at two N-glycosylation sites (Asn153 and Asn223) abolish the bisecting GlcNAc modification on BACE1. These mutations almost cancelled the enhanced BACE1 degradation seen in Mgat3−/− MEFs, indicating that bisecting GlcNAc on BACE1 indeed regulates its degradation. Finally, we show that traumatic brain injury-induced BACE1 up-regulation is significantly suppressed in the Mgat3−/− brain. These results highlight the role of bisecting GlcNAc in oxidative stress-induced BACE1 expression and offer a novel glycan-targeted strategy for suppressing Aβ generation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3