Enhanced OXPHOS, glutaminolysis and β-oxidation constitute the metastatic phenotype of melanoma cells

Author:

Rodrigues Mariana F.1,Obre Emilie2,de Melo Fabiana H.M.34,Santos Gilson C.1,Galina Antonio1,Jasiulionis Miriam G.3,Rossignol Rodrigue2,Rumjanek Franklin D.1,Amoêdo Nivea D.1

Affiliation:

1. Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do RIo de Janeiro, Rio de Janeiro, Brazil

2. Maladies Rares: Génétique et Métabolisme, Université de Bordeaux Segalen, Bordeaux, France

3. Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil

4. Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil

Abstract

Tumours display different cell populations with distinct metabolic phenotypes. Thus, subpopulations can adjust to different environments, particularly with regard to oxygen and nutrient availability. Our results indicate that progression to metastasis requires mitochondrial function. Our research, centered on cell lines that display increasing degrees of malignancy, focused on metabolic events, especially those involving mitochondria, which could reveal which stages are mechanistically associated with metastasis. Melanocytes were subjected to several cycles of adhesion impairment, producing stable cell lines exhibiting phenotypes representing a progression from non-tumorigenic to metastatic cells. Metastatic cells (4C11+) released the highest amounts of lactate, part of which was derived from glutamine catabolism. The 4C11+ cells also displayed an increased oxidative metabolism, accompanied by enhanced rates of oxygen consumption coupled to ATP synthesis. Enhanced mitochondrial function could not be explained by an increase in mitochondrial content or mitochondrial biogenesis. Furthermore, 4C11+ cells had a higher ATP content, and increased succinate oxidation (complex II activity) and fatty acid oxidation. In addition, 4C11+ cells exhibited a 2-fold increase in mitochondrial membrane potential (ΔΨmit). Consistently, functional assays showed that the migration of cells depended on glutaminase activity. Metabolomic analysis revealed that 4C11+ cells could be grouped as a subpopulation with a profile that was quite distinct from the other cells investigated in the present study. The results presented here have centred on how the multiple metabolic inputs of tumour cells may converge to compose the so-called metastatic phenotype.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3