Affiliation:
1. Department of Ultrasound, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
2. Shenzhen Medical Ultrasound Engineering Center, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
Abstract
Abstract
The present study compared the effects of ultrasonic irradiation and SonoVue microbubbles (US) or Lipofectamine 3000 on the transfection of small interfering RNA for PRR11 (siPRR11) and Proline-rich protein 11 (PRR11) overexpression plasmid into breast cancer cells. SiPRR11 and PRR11 overexpression plasmid were transfected into breast cancer MCF7 cells mediated by US and Lipofectamine 3000. PRR11 expressions in breast cancer and normal tissues were determined using Gene Expression Profiling Interactive Analysis (GEPIA). The viability, proliferation, migration, invasion and apoptosis of breast cancer cells were respectively measured by MTT assay, clone formation assay, scratch wound-healing assay, Transwell assay and flow cytometry. PRR11 and epithelial-to-mesenchymal transition (EMT)-related and apoptosis-related (B-cell lymphoma 2, Bcl-2; Bcl-2-associated protein X, Bax) proteins’ expressions were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot as appropriate. As ultrasonic intensity increased, the viability of MCF7 cells was decreased. Results from GEPIA suggested that PRR11 was up-regulated in breast cancer. Silencing PRR11 mediated by US showed a higher efficiency than by Lipofectamine 3000. SiPRR11 transfected by Lipofectamine 3000 suppressed cells growth and metastasis, while promoted cell apoptosis. Moreover, E-cadherin (E-cad) and Bax expressions were high but N-cadherin (N-cad), Snail and Bcl-2 expressions were low. However, overexpressed PRR11 caused the opposite effects. More importantly, transfection of siPRR11 and PRR11 overexpression plasmid using US had a higher efficacy than using Lipofectamine 3000. US transfection of PRR11 siRNA showed better effects on inhibiting breast cancer progression. The current findings contribute to a novel treatment for breast cancer.
Subject
Cell Biology,Molecular Biology,Biochemistry,Biophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献