Interaction of oestrogen and peroxisome proliferator-activated receptors with apolipoprotein(a) gene enhancers

Author:

PUCKEY Loretto H.1,KNIGHT Brian L.1

Affiliation:

1. Lipoprotein Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Hospital, DuCane Road, London W12 ONN, U.K.

Abstract

A high plasma concentration of lipoprotein(a) [Lp(a)] confers an increased risk for the development of coronary heart disease. Hormones, such as oestrogen, are some of the few compounds known to reduce plasma Lp(a) levels. A putative enhancer region, located at the DHII DNase I hypersensitive site approx. 28kb upstream of the apolipoprotein(a) [apo(a)] gene, contains a number of sequences similar to the binding half-sites for nuclear hormone receptors, such as the oestrogen receptor and the peroxisome proliferator-activated receptor (PPAR). The 180bp core DHII enhancer increased the activity of the apo(a) promoter by over 7-fold in reporter-gene assays in HepG2 cells in vitro. Almost 60% of this increase was lost in the presence of co-transfected oestrogen receptor and oestrogen. In contrast, co-transfection with PPARα increased the effect of the DHII enhancer on apo(a) transcriptional activity by approx. 70% and could overcome the inhibitory effect of the oestrogen receptor on apo(a) transcription. Gel mobility-shift assays showed that oestrogen receptor protein bound to one half of a sequence corresponding to a predicted oestrogen receptor response element. PPARα also bound to this site and competed with oestrogen receptors for binding. In addition, PPARα bound to a separate site that comprised part of a direct repeat of nuclear hormone receptor half-sites. The results suggest that nuclear hormones affect plasma Lp(a) concentrations by binding to the sequences within the DHII enhancer, thereby altering the amount by which the enhancer increases the transcription of the apo(a) gene.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3