Secretion of phosphomannosyl-deficient arylsulphatase A and cathepsin D from isolated human macrophages

Author:

MUSCHOL Nicole1,MATZNER Ulrich2,TIEDE Stephan1,GIESELMANN Volkmar2,ULLRICH Kurt1,BRAULKE Thomas1

Affiliation:

1. Children's Hospital, University of Hamburg, Martinistr. 52, D-20246 Hamburg, Germany,

2. Institute for Physiological Chemistry, University of Bonn, Nussallee 11, D-53115 Bonn, Germany

Abstract

The transfer of macrophage-secreted arylsulphatase A (ASA) to enzyme-deficient brain cells is part of the therapeutic concept of bone marrow transplantation in lysosomal storage diseases. Here we have investigated this transfer in vitro. The uptake of 125I-labelled recombinant human ASA purified from ASA-overexpressing mouse embryonic fibroblasts deficient for mannose 6-phosphate (M6P) receptors in a mouse ASA-deficient astroglial cell line was completely inhibited by M6P. In contrast, when ASA-deficient astroglial cells were incubated with secretions of [35S]methionine-labelled human macrophages or mouse microglia, containing various lysosomal enzymes, neither ASA nor cathepsin D (CTSD) were detected in acceptor cells. Co-culturing of metabolically labelled macrophages with ASA-deficient glial cells did not result in an M6P-dependent transfer of ASA or CTSD between these two cell types. In secretions of [33P]phosphate-labelled macrophages no or weakly phosphorylated ASA and CTSD precursor polypeptides were found, whereas both intracellular and secreted ASA from ASA-overexpressing baby hamster kidney cells displayed 33P-labelled M6P residues. Finally, the uptake of CTSD from secretions of [35S]methionine-labelled macrophages in rat hepatocytes was M6P-independent. These data indicated that lysosomal enzymes secreted by human macrophages or a mouse microglial cell line cannot be endocytosed by brain cells due to the failure to equip newly synthesized lysosomal enzymes with the M6P recognition marker efficiently. The data suggest that other mechanisms than the proposed M6P-dependent secretion/recapture of lysosomal enzymes might be responsible for therapeutic effects of bone marrow transplantation in the brain.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3