Assembling amyloid fibrils from designed structures containing a significant amyloid β-peptide fragment

Author:

TJERNBERG Lars O.1,TJERNBERG Agneta2,BARK Niklas3,SHI Yuan4,RUZSICSKA Bela P.4,BU Zimei5,THYBERG Johan6,CALLAWAY David J.E.4

Affiliation:

1. NEUROTEC, Karolinska Institutet, S141 86 Stockholm, Sweden

2. Department of Structural Chemistry, Biovitrum, S112 87 Stockholm, Sweden

3. Department of Clinical Neuroscience, CMM L8:01, Karolinska Institutet, S171 76 Stockholm, Sweden

4. North Shore/LIJ Research Institute, 350 Community Drive, Manhasset, NY 11030-3849, U.S.A.

5. National Institute of Standards and Technology, 100 Bureau Dr Stop 8562, Gaithersburg, MD 20899-8562, U.S.A.

6. Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, S171 77 Stockholm, Sweden

Abstract

The amyloid plaque, consisting of amyloid β-peptide (Aβ) fibrils surrounded by dystrophic neurites, is an invariable feature of Alzheimer's disease. The determination of the molecular structure of Aβ fibrils is a significant goal that may lead to the structure-based design of effective therapeutics for Alzheimer's disease. Technical challenges have thus far rendered this goal impossible. In the present study, we develop an alternative methodology. Rather than determining the structure directly, we design conformationally constrained peptides and demonstrate that only certain ‘bricks’ can aggregate into fibrils morphologically identical to Aβ fibrils. The designed peptides include variants of a decapeptide fragment of Aβ, previously shown to be one of the smallest peptides that (1) includes a pentapeptide sequence necessary for Aβ—Aβ binding and aggregation and (2) can form fibrils indistinguishable from those formed by full-length Aβ. The secondary structure of these bricks is monitored by CD spectroscopy, and electron microscopy is used to study the morphology of the aggregates formed. We then made various residue deletions and substitutions to determine which structural features are essential for fibril formation. From the constraints, statistical analysis of side-chain pair correlations in β-sheets and experimental data, we deduce a detailed model of the peptide strand alignment in fibrils formed by these bricks. Our results show that the constrained decapeptide dimers rapidly form an intramolecular, antiparallel β-sheet and polymerize into amyloid fibrils at low concentrations. We suggest that the formation of an exposed β-sheet (e.g. an Aβ dimer formed by interaction in the decapeptide region) could be a rate-limiting step in fibril formation. A theoretical framework that explains the results is presented in parallel with the data.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3