Regulation of type-II collagen gene expression during human chondrocyte de-differentiation and recovery of chondrocyte-specific phenotype in culture involves Sry-type high-mobility-group box (SOX) transcription factors

Author:

STOKES David G.1,LIU Gang1,DHARMAVARAM Rita1,HAWKINS David1,PIERA-VELAZQUEZ Sonsoles1,JIMENEZ Sergio A.1

Affiliation:

1. Department of Medicine, Division of Rheumatology, 233 S. 10th Street, Thomas Jefferson University, Philadelphia, PA 19107, U.S.A.

Abstract

During ex vivo growth as monolayer cultures, chondrocytes proliferate and undergo a process of de-differentiation. This process involves a change in morphology and a change from expression of chondrocyte-specific genes to that of genes that are normally expressed in fibroblasts. Transfer of the monolayer chondrocyte culture to three-dimensional culture systems induces the cells to re-acquire a chondrocyte-specific phenotype and produce a cartilaginous-like tissue in vitro. We investigated mechanisms involved in the control of the de-differentiation and re-differentiation process in vitro. De-differentiated chondrocytes re-acquired their chondrocyte-specific phenotype when cultured on poly-(2-hydroxyethyl methacrylate) (polyHEMA) as assayed by morphology, reverse transcriptase PCR of chondrocyte-specific mRNA, Western-blot analysis and chondrocyte-specific promoter activity. Essentially, full recovery of the chondrocyte-specific phenotype was observed when cells that had been cultured for 4 weeks on plastic were transferred to culture on polyHEMA. However, after subsequent passages on plastic, the phenotype recovery was incomplete or did not occur. The activity of a gene reporter construct containing the promoter and enhancer from the human type-II collagen gene (COL2A1) was modulated by the culture conditions, so that its transcriptional activity was repressed in monolayer cultures and rescued to some extent when the cells were switched to polyHEMA cultures. The binding of Sry-type high-mobility-group box (SOX) transcription factors to the enhancer region was modulated by the culture conditions, as were the mRNA levels for SOX9. A transfected human type-II collagen reporter construct was activated in de-differentiated cells by ectopic expression of SOX transcription factors. These results underscore the overt change in phenotype that occurs when chondrocytes are cultured as monolayers on tissue-culture plastic substrata.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3