Parathyroid hormone induces protein kinase C but not adenylate cyclase in adult cardiomyocytes and regulates cyclic AMP levels via protein kinase C-dependent phosphodiesterase activity

Author:

Schlüter K D1,Weber M1,Piper H M1

Affiliation:

1. Physiologisches Institut, Universität Giessen, Aulweg 129, D-35392 GieBen, Germany

Abstract

Adult ventricular cardiomyocytes have been identified as target cells for parathyroid hormone (PTH) but little is known about its signal transduction in these cells. In the present study the influence of PTH on cyclic AMP accumulation and the activity of protein kinase C (PKC) in cardiomyocytes was evaluated. A mid-regional synthetic fragment of PTH, PTH-(28-48), which exerts a hypertrophic effect on cardiomyocytes, increased the activity of membrane-associated PKC in a dose-dependent manner (1-100 nM). Activated membranous PKC was dependent on Ca2+ and sensitive to an inhibitor of Ca(2+)-dependent isoforms of PKC. When adenylate cyclase was stimulated by the addition of isoprenaline, a beta-adrenoceptor agonist, PTH-(28-48) antagonized cyclic AMP accumulation. This antagonistic effect of PTH-(28-48) could be mimicked by activation of PKC with a phorbol ester and inhibited by isobutylmethylxanthine, a phosphodiesterase inhibitor. An N-terminal synthetic fragment, PTH-(1-34), which includes an adenylate cyclase-activating domain, did not stimulate the accumulation of cyclic AMP in cardiomyocytes. The results demonstrate that in adult cardiomyocytes PTH (1) is able to stimulate PKC, (2) is not able to cause accumulation of cyclic AMP and (3) functionally antagonizes the effect of beta-adrenoceptor stimulation to increase cellular cyclic AMP concentrations via PKC-dependent phosphodiesterase activity.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3