Detection and characterization of proteinase K-sensitive disease-related prion protein with thermolysin

Author:

Cronier Sabrina1,Gros Nathalie1,Tattum M. Howard1,Jackson Graham S.1,Clarke Anthony R.1,Collinge John1,Wadsworth Jonathan D. F.1

Affiliation:

1. MRC Prion Unit and Department of Neurodegenerative Disease, University College London Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, U.K

Abstract

Disease-related PrPSc [pathogenic PrP (prion protein)] is classically distinguished from its normal cellular precursor, PrPC(cellular PrP) by its detergent insolubility and partial resistance to proteolysis. Although molecular diagnosis of prion disease has historically relied upon detection of protease-resistant fragments of PrPSc using PK (proteinase K), it is now apparent that a substantial fraction of disease-related PrP is destroyed by this protease. Recently, thermolysin has been identified as a complementary tool to PK, permitting isolation of PrPSc in its full-length form. In the present study, we show that thermolysin can degrade PrPC while preserving both PK-sensitive and PK-resistant isoforms of disease-related PrP in both rodent and human prion strains. For mouse RML (Rocky Mountain Laboratory) prions, the majority of PK-sensitive disease-related PrP isoforms do not appear to contribute significantly to infectivity. In vCJD (variant Creutzfeldt–Jakob disease), the human counterpart of BSE (bovine spongiform encephalopathy), up to 90% of total PrP present in the brain resists degradation with thermolysin, whereas only ∼15% of this material resists digestion by PK. Detection of PK-sensitive isoforms of disease-related PrP using thermolysin should be useful for improving diagnostic sensitivity in human prion diseases.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference44 articles.

1. Prions;Prusiner;Proc. Natl. Acad. Sci. U.S.A.,1998

2. Prion diseases of humans and animals: their causes and molecular basis;Collinge;Annu. Rev. Neurosci.,2001

3. Update on human prion disease;Wadsworth;Biochim. Biophys. Acta,2007

4. Molecular neurology of prion disease;Collinge;J. Neurol. Neurosurg. Psychiatr.,2005

5. Self replication and scrapie;Griffith;Nature,1967

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3