The lack of rhodanese RhdA affects the sensitivity of Azotobacter vinelandii to oxidative events

Author:

Cereda Angelo1,Carpen Aristodemo1,Picariello Gianluca2,Tedeschi Gabriella3,Pagani Silvia1

Affiliation:

1. Dipartimento di Scienze Molecolari Agroalimentari, Università di Milano, 20133, Milano, Italy

2. Istituto di Scienze dell'Alimentazione, CNR (Consiglio Nazionale delle Ricerche), 83100, Avellino, Italy

3. DIPAV (Department of Animal Pathology, Hygiene and Veterinary Public Health), Sezione di Biochimica, Università di Milano, 20133, Milano, Italy

Abstract

The rhdA gene of Azotobacter vinelandii codes for RhdA, a rhodanese-domain protein with an active-site loop structure which has not currently been found in proteins of the rhodanese-homology superfamily. Considering the lack of information on the functional role of the ubiquitous rhodaneses, in the present study we examined the in vivo functions of RhdA by using an A. vinelandii mutant strain (MV474), in which the rhdA gene was disrupted by deletion. Preliminary phenotypic characterization of the rhdA mutant suggested that RhdA could exert protection over Fe–S enzymes, which are easy targets for oxidative damage. To highlight the role of RhdA in preserving sensitive Fe–S clusters, in the present study we analysed the defects of the rhdA-null strain by exploiting growth conditions which resulted in enhancing the catalytic deficiency of enzymes with vulnerable Fe–S clusters. We found that a lack of RhdA impaired A. vinelandii growth in the presence of gluconate, a carbon source that activates the Entner–Doudoroff pathway in which the first enzyme, 6-phosphogluconate dehydratase, employs a 4Fe–4S cluster as an active-site catalyst. By combining proteomics, enzymatic profiles and model systems to generate oxidative stress, evidence is provided that to rescue the effects of a lack of RhdA, A. vinelandii needed to activate defensive activities against oxidative damage. The possible functionality of RhdA as a redox switch which helps A. vinelandii in maintaining the cellular redox balance was investigated by using an in vitro model system that demonstrated reversible chemical modifications in the highly reactive RhdA Cys230 thiol.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3