Phorbol ester-stimulated phosphorylation of keratinocyte transglutaminase in the membrane anchorage region

Author:

Chakravarty R1,Rong X H1,Rice R H1

Affiliation:

1. Charles A. Dana Laboratory of Toxicology, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, U.S.A.

Abstract

The membrane-bound transglutaminase of cultured keratinocytes became radioactively labelled upon addition of [32P]Pi to the medium. Transglutaminase phosphorylation was also demonstrable using particulate material isolated from cell homogenates. Compatible with mediation of the labelling by protein kinase C, the degree of phosphorylation in intact cells was stimulated approx. 5-fold in 4 h on treatment with the tumour-promoting phorbol ester phorbol 12-myristate 13-acetate, but not by phorbol. The extent of labelling was virtually unaffected by cycloheximide inhibition of protein synthesis, indicating that it arose primarily through turnover of phosphate in the membrane-bound enzyme. Phosphoamino acid analysis detected labelling only of serine residues. Most of the label was removed by trypsin release of the enzyme from the particulate fraction of cell homogenates, which deletes a membrane anchorage region of approximately 10 kDa. Upon trypsin treatment of the enzyme after immunoprecipitation, the phosphate label was recovered in soluble peptide material with a size of several thousand Da or less. Indicative of fragmentation of the membrane anchorage region, this material was separable by h.p.l.c. into two equally labelled peptides. Moreover, when the enzyme was labelled with [3H]palmitate or [3H]myristate, the fatty-acid-labelled peptide material required non-ionic detergent for solubilization and was separable from the phosphate-labelled material by gel filtration. Phorbol ester treatment of cultured keratinocytes in high- or low- Ca2(+)-containing medium was not accompanied by an appreciable protein-synthesis-independent change in transglutaminase activity. Independent of possible alteration of the intrinsic catalytic activity of the enzyme, phosphorylation may well modulate its interaction with substrate proteins, a potential site for physiological regulation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3