Structural biology of Cl

Author:

Arlaud G. J.1,Gaboriaud C.2,Thielens N. M.1,Rossi V.1

Affiliation:

1. Laboratoire d'Enzymologie Moléculaire, Institut de Biologie Structurale Jean-Pierre Ebel, 41 rue Jules Horowitz, 38027 Grenoble Cedex I, France

2. Laboratoire de Cristallographie et Cristallogénèse des Protéines, Institut de Biologie Structurale Jean-Pierre Ebel, 41 rue Jules Horowitz, 38027 Grenoble Cedex I, France

Abstract

The classical complement pathway is a major element of innate immunity against infection, and is also involved in immune tolerance, graft rejection and various pathologies. This pathway is triggered by C1, a multimolecular protease formed from the association of a recognition protein, C1q, and a catalytic subunit, the calcium-dependent tetramer C1s-C1r-C1r-C1s, which comprises two copies of each of the modular proteases C1r and C1s. All activators of the pathway are recognized by the C1q moiety of C1, a process that generates a conformational signal that triggers self-activation of C1r, which in turn activates C1s, the enzyme that mediates specific cleavage of C4 and C2, the C1 substrates. Early work based on biochemical and electron microscopy studies has allowed characterization of the domain structure of the C1 subcomponents and led to a low-resolution model of the complex in which the elongated C1s-C1r-C1r-C1s tetramer folds into a compact, figure-of-8-shaped conformation upon interaction with C1q. The strategy used over the past decade was based on a dissection of the C1 proteins into modular segments to characterize their function and solve their three-dimensional structure by X-ray crystallography or NMR spectroscopy. This approach allows deep insights into the structure-function relationships of C1, particularly with respect to the assembly of the C1 complex and the mechanisms underlying its activation and proteolytic activity.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3