The purification of tissue inhibitor of metalloproteinases-2 from its 72 kDa progelatinase complex. Demonstration of the biochemical similarities of tissue inhibitor of metalloproteinases-2 and tissue inhibitor of metalloproteinases-1

Author:

Ward R V1,Hembry R M1,Reynolds J J1,Murphy G1

Affiliation:

1. Department of Cell and Molecular Biology, Strangeways Research Laboratory, Cambridge, CB1 4RN, U.K.

Abstract

Human gingival fibroblasts in culture were shown to secrete a 72 kDa progelatinase, of which a proportion in the medium was found to be complexed with tissue inhibitor of metalloproteinases-2 (TIMP-2). A purification procedure was devised to purify free enzyme and inhibitor. We also describe the purification of both 95 kDa progelatinase bound to TIMP-1 and free 95 kDa progelatinase from the medium of U937 cells. A polyclonal antiserum to TIMP-2 was prepared and it was shown that TIMP-1 and TIMP-2 are antigenically distinct. The ability to form stable complexes and the relative inhibitory activities of TIMP-1 and TIMP-2 towards 95 kDa and 72 kDa gelatinases, collagenase, stromelysins 1 and 2 and punctuated metalloproteinase were determined; only minor differences were found. Complex-formation between TIMP-2 and 72 kDa progelatinase was demonstrated not to reduce the metalloproteinase-inhibitory activity of TIMP-2, a finding that led to the characterization of high-molecular-mass TIMP activity. Competition experiments between progelatinases and active gelatinases for TIMPs indicated that the affinity of TIMPs for progelatinases is weaker than that for active gelatinases. In a study of the effects of TIMP-1 and TIMP-2 on progelatinase self-cleavage we found that both TIMP-1 and TIMP-2 inhibit the conversion of 95 kDa and 72 kDa progelatinases and prostromelysin into lower-molecular-mass forms. TIMP capable of complexing with progelatinase was shown to be no more efficient an inhibitor of gelatinase self-cleavage than TIMP not able to complex with progelatinase.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3