Direct comparison of nick-joining activity of the nucleic acid ligases from bacteriophage T4

Author:

Bullard Desmond R.1,Bowater Richard P.1

Affiliation:

1. School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, U.K.

Abstract

The genome of bacteriophage T4 encodes three polynucleotide ligases, which seal the backbone of nucleic acids during infection of host bacteria. The T4Dnl (T4 DNA ligase) and two RNA ligases [T4Rnl1 (T4 RNA ligase 1) and T4Rnl2] join a diverse array of substrates, including nicks that are present in double-stranded nucleic acids, albeit with different efficiencies. To unravel the biochemical and functional relationship between these proteins, a systematic analysis of their substrate specificity was performed using recombinant proteins. The ability of each protein to ligate 20 bp double-stranded oligonucleotides containing a single-strand break was determined. Between 4 and 37 °C, all proteins ligated substrates containing various combinations of DNA and RNA. The RNA ligases ligated a more diverse set of substrates than T4Dnl and, generally, T4Rnl1 had 50–1000-fold lower activity than T4Rnl2. In assays using identical conditions, optimal ligation of all substrates was at pH 8 for T4Dnl and T4Rnl1 and pH 7 for T4Rnl2, demonstrating that the protein dictates the pH optimum for ligation. All proteins ligated a substrate containing DNA as the unbroken strand, with the nucleotides at the nick of the broken strand being RNA at the 3′-hydroxy group and DNA at the 5′-phosphate. Since this RNA–DNA hybrid was joined at a similar maximal rate by T4Dnl and T4Rnl2 at 37 °C, we consider the possibility that this could be an unexpected physiological substrate used during some pathways of ‘DNA repair’.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference60 articles.

1. Bacteriophage T4 genome;Miller;Microbiol. Mol. Biol. Rev.,2003

2. DNA ligase: structure, mechanism, and function;Lehman;Science,1974

3. RNA capping enzyme and DNA ligase: a superfamily of covalent nucleotidyl transferases;Shuman;Mol. Microbiol.,1995

4. Bacterial DNA ligases;Wilkinson;Mol. Microbiol.,2001

5. Structural and mechanistic conservation in DNA ligases;Doherty;Nucleic Acids Res.,2000

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3