Purified recombinant insulin-degrading enzyme degrades amyloid β-protein but does not promote its oligomerization

Author:

CHESNEAU Valérie1,VEKRELLIS Konstantinos1,ROSNER Marsha Rich1,SELKOE Dennis J.2

Affiliation:

1. Ben May Institute for Cancer Research, University of Chicago, 5841 S. Maryland Avenue, MC 6027, Chicago, IL 60637, U.S.A.

2. Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, U.S.A.

Abstract

Amyloid β-protein (Aβ) has been implicated as an early and essential factor in the pathogenesis of Alzheimer's disease. Although its cellular production has been studied extensively, little is known about Aβ clearance. Recently, insulin-degrading enzyme (IDE), a 110-kDa metalloendopeptidase, was found to degrade both endogenously secreted and synthetic Aβ peptides. Surprisingly, IDE-mediated proteolysis of [125I]Aβ(1-40) in microglial cell-culture media was accompanied by the formation of 125I-labelled peptides with higher apparent molecular masses, raising the possibility that the degradation products act as ‘seeds’ for Aβ oligomerization. To directly address the role of IDE in Aβ degradation and oligomerization, we investigated the action of purified recombinant wild-type and catalytically inactive IDEs. Our data demonstrate that (i) IDE alone is sufficient to cleave purified Aβ that is either unlabelled, iodinated or 35S-labelled; (ii) the initial cleavage sites are His14–Gln15, Phe19–Phe20 and Phe20–Ala21; and (iii) incubation of IDE with [125I]Aβ, but not with [35S]-Aβ, leads to the formation of slower migrating species on gels. Since iodination labels N-terminal fragments of Aβ, and 35S labels C-terminal products, we analysed unlabelled synthetic fragments of Aβ and determined that only the N-terminal fragments migrate with anomalously high molecular mass. These results indicate that IDE alone is sufficient to degrade Aβ at specific sites, and that its degradation products do not promote oligomerization of the intact Aβ peptide.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3