The site of action of Ca2+ in the activation of steroidogenesis: studies in Ca2+-clamped bovine adrenal zona-glomerulosa cells

Author:

Python C P1,Laban O P1,Rossier M F1,Vallotton M B1,Capponi A M1

Affiliation:

1. Division of Endocrinology, University Hospital, CH-1211 Geneva 14, Switzerland.

Abstract

The Ca(2+)-messenger system plays a crucial role in the regulation of steroid production in adrenal zona-glomerulosa cells, as it is known to mediate the action of both angiotensin II and K+. In the present study we used intact isolated glomerulosa cells in which the cytosolic free Ca2+ concentration ([Ca2+]c) was clamped at various levels with the Ca2+ ionophore ionomycin in order to locate the site(s) of action of Ca2+. By measuring in parallel steroid synthesis and [Ca2+]c, we show that Ca2+ levels (50-860 nM) regulate the production of both pregnenolone (up to 669 +/- 71.1% of the basal production) and aldosterone (up to 301 +/- 42.2%; EC50 = 303 nM). By contrast, Ca2+ did not stimulate the conversion of 11-deoxycorticosterone into aldosterone. Ca2+ modulation did not affect the formation of pregnenolone from freely diffusible analogues of cholesterol, indicating that Ca2+ acts at a step upstream of cholesterol side-chain cleavage. Moreover cycloheximide, an inhibitor of protein translation and of adrenocorticotropin-induced facilitation of intramitochondrial cholesterol transport, the rate-limiting step in steroidogenesis, also blocked Ca(2+)-triggered pregnenolone formation. This is consistent with a model in which Ca2+ promotes cholesterol transfer between mitochondrial membranes. In addition, agents using the cyclic AMP pathway as well as angiotensin II potentiated the steroidogenic response to increases in [Ca2+]c by augmenting both the efficacy and the potency of Ca2+. This effect of angiotensin II did not involve protein kinase C. These results establish a direct link between agonist-induced [Ca2+]c rises and a specific step of the steroidogenic pathway.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3