Molecular organization of the interferon γ-binding domain in heparan sulphate

Author:

Lortat-Jacob H1,Turnbull J E2,Grimaud J A1

Affiliation:

1. Department of Cellular Pathology, Pasteur Institute, Centre National de la Recherche Scientifique URA 1459, 69365 Lyon Cedex 7, France

2. Cancer Research Campaign Medical Oncology Department, University of Manchester, Christie Hospital, Manchester M20 9BX, U.K.

Abstract

Interferon (IFN)-gamma, in common with a number of cytokines or growth factors, strongly interacts with heparan sulphate (HS). It has been shown previously that one of the C-terminal basic clusters of amino acids (a regulatory element of IFN-gamma activity) is involved in this interaction. The structural organization of the HS domain that binds to human IFN-gamma has been investigated here. IFN-gamma-affinity chromatography of HS oligosaccharides released by either enzymic or chemical cleavage showed that the binding site is not found in a domain that is resistant to either heparinase or heparitinase or exclusively N-sulphated or N-acetylated. This led us to take a ‘footprinting’ approach in which HS was depolymerized in the presence of IFN-gamma and the cytokine-protected sequences were separated from the digested fragments. Using this strategy we consistently isolated an IFN-gamma-protected domain (IPD; approx. 10 kDa) which displayed the same affinity as full-length HS for the cytokine. Treatment of IPD with either heparinase or heparitinase strongly reduced its affinity, confirming that the high-affinity binding site encompassed a mixture of HS structural domains. Patterns of depolymerization with either enzymic or chemical agents were consistent with IPD being composed of an extended internal domain (approx. 7 kDa) which is predominantly N-acetylated and GlcA-rich, flanked by small N-sulphated oligosaccharides (mainly hexa- to octasaccharides). This is the first description of an HS protein-binding sequence with this type of molecular organization. Furthermore, using a cross-linking strategy, we demonstrated that one HS molecule bound to an IFN-gamma dimer. Together these results lead us to propose a novel model for the interaction of HS with a protein, in which two sulphated terminal sequences of the binding domain interact directly with the two IFN-gamma C-termini and bridge the two cytokine monomers through an internal N-acetyl-rich sequence.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 129 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3