Phosphatidylinositol-4,5-bisphosphate phosphodiesterase and phosphomonoesterase activities of rat brain. Some properties and possible control mechanisms

Author:

Irvine R F,Letcher A J,Dawson R M C

Abstract

The phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] [and to a lesser extent, the phosphatidylinositol-4-phosphate (PtdIns4P)] phosphodiesterase and monoesterase activities of a rat brain supernatant have been studied by using 32P-labelled substrates prepared from human red blood cells. PtdIns(4,5)P2 monoesterase is maximally stimulated by Mg2+, though some activity is detectable in Ca2+/EDTA (Mg2+-free) buffers. The phosphodiesterase, however, is Ca2+-dependent, and in Ca2+/EDTA buffers with the pure lipid as substrate, shows maximal activity at 100 nM-Ca2+. If PtdIns(4,5)P2 is presented as a component of a lipid mixture of similar composition to that of the inner half of the lipid bilayer of a rat liver plasma membrane, the phosphodiesterase shows considerable activity at 1 microM-Ca2+, and is maximal at 100 microM-Ca2+. However, if it is assayed against the same substrate in Ca2+/EGTA buffers with 3mM-Mg2+ and 80 mM-KCl present (as an approximate parallel with the ionic environment in vivo), it shows no detectable activity below 100 microM-Ca2+, and is maximal at 1 mM-Ca2+. The monoesterase can hydrolyse PtdIns(4,5)P2 in such a lipid mixture at all Ca2+ concentrations with 1 or 3 mM-Mg2+ present. PtdIns(4,5)P2 phosphodiesterase can be induced to attack its substrate under ionic conditions similar to those in vivo (0.1-1 microM-Ca2+; 1 mM-Mg2+; 80 mM-KCl) by the conversion of its substrate into a non-bilayer configuration. If given such a substrate [by mixing PtdIns(4,5)P2 with an excess of phosphatidylethanolamine (PtdEtn)] it shows a shallow Ca2+-dependency curve from 0.1 to 100 microM and then a steep rise to 1 mM-Ca2+. Together these observations lead us to the suggestion that a perturbation in a membrane in vivo equivalent to a non-bilayer configuration would be sufficient to induce phosphodiesterase-catalysed PtdIns(4,5)P2 breakdown. When given substrates mixed with excess PtdEtn at pH 7.25 (or 5.5), 1 microM-Ca2+, 1 mM-Mg2+ and 80 mM-KCl, the rat brain supernatant phosphodiesterase activity hydrolysed PtdIns(4,5)P 50-100-fold faster than it hydrolysed phosphatidylinositol (PtdIns). If the supernatant was presented with such a non-bilayer mixture containing a ten-fold excess of PtdIns over PtdIns(4,5)P2, the latter phospholipid was still hydrolysed by phosphodiesterasic cleavage at nearly ten times the rate of the former. Receptor-stimulated phosphodiesterase cleavage of polyphosphoinositides is an early event in cell activation by many agonists. The properties of PtdIns(4,5)P2 phosphodiesterase in vitro suggest that a change in the presentation of its substrate would be a sensitive and sufficient control on the enzyme's activity in vivo.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 222 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rex Malcolm Chaplin Dawson. 3 June 1924—29 March 2021;Biographical Memoirs of Fellows of the Royal Society;2023-03

2. A Short Historical Perspective of Methods in Inositol Phosphate Research;Methods in Molecular Biology;2019-11-27

3. PTEN Regulates PI(3,4)P2 Signaling Downstream of Class I PI3K;Molecular Cell;2017-11

4. A short history of inositol lipids;Journal of Lipid Research;2016-11

5. A tale of two inositol trisphosphates;Biochemical Society Transactions;2016-02-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3