Affiliation:
1. The 2nd Department of Internal Medicine, Chiba University School of Medicine, 1-8-1 Inohana, Chiba 280, Japan
2. The 2nd Department of Microbiology, Chiba University School of Medicine, 1-8-1 Inohana, Chiba 280, Japan
Abstract
In rat liver cytosol, rapid ADP-ribosylation of a 52 kDa protein by endogenous ADP-ribosyltransferase(s) was observed. This ADP-ribosylation was stimulated dose-dependently by 14,15-epoxyeicosatrienoic acid (14,15-EET), one of the metabolites of arachidonic acid by NADPH-dependent cytochrome P-450 mono-oxygenase. This stimulatory effect required the presence of GTP or its non-hydrolysable analogues, guanosine 5′-[beta gamma-imido]triphosphate or guanosine 5′-[gamma-thio]triphosphate. Of four regioisomeric EETs, 14,15-EET was the most potent. No stimulatory effect was observed with addition of 14,15-dihydroxyeicosatrienoic acid, a stable metabolite of 14,15-EET. The 52 kDa protein was not ADP-ribosylated by cholera toxin A subunit and pertussis toxin, and was not recognized by anti-Gs alpha and anti-Gi alpha antibodies. However, the 52 kDa protein could be photoaffinity-labelled with 8-azidoguanosine 5′-[alpha-32P]triphosphate. These results suggest that the 52 kDa protein is neither Gs nor Gi, though it may have a GTP-binding site. These results contribute to the understanding of the role of mono-oxygenase metabolites of arachidonic acid in intracellular signal transduction.
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献