Isolation and characterization of multiple forms of rat liver UDP-glucuronate glucuronosyltransferase

Author:

Roy Chowdhury J,Roy Chowdhury N,Falany C N,Tephly T R,Arias I M

Abstract

UDP-glucuronosyltransferase (EC 2.4.1.17) activity was solubilized from male Wistar rat liver microsomal fraction in Emulgen 911, and six fractions with the transferase activity were separated by chromatofocusing on PBE 94 (pH 9.4 to 6.0). Fraction I was further separated into Isoforms Ia, Ib and Ic by affinity chromatography on UDP-hexanolamine-Sepharose 4B. UDP-glucuronosyltransferase in Fraction III was further purified by rechromatofocusing (pH 8.7 to 7.5). UDP-glucuronosyltransferases in Fractions IV and V were purified by UDP-hexanolamine-Sepharose chromatography. The transferase isoforms in Fractions II, III, IV and V were finally purified by h.p.l.c. on a TSK G 3000 SW column. Purified UDP-glucuronosyltransferase Isoforms Ia (Mr 51,000), Ib (Mr 52,000), Ic (Mr 56,000), II (Mr 52,000), IV (Mr 53,000) and V (Mr 53,000) revealed single Coomassie Blue-stained bands on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Isoform III enzyme showed two bands of Mr 52,000 and 53,000. Comparison of the amino acid compositions by the method of Cornish-Bowden [(1980) Anal. Biochem. 105, 233-238] suggested that all UDP-glucuronosyltransferase isoforms are structurally related. Reverse-phase h.p.l.c. of tryptic peptides of individual isoforms revealed distinct ‘maps’, indicating differences in primary protein structure. The two bands of Isoform III revealed distinct electrophoretic peptide maps after limited enzymic proteolysis. After reconstitution with phosphatidylcholine liposomes, the purified isoforms exhibited distinct but overlapping substrate specificities. Isoform V was specific for bilirubin glucuronidation, which was not inhibited by other aglycone substrates. Each isoform, except Ia, was identified as a glycoprotein by periodic acid/Schiff staining.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A historical review of jaundice: May the golden oriole live forever;Clinical Liver Disease;2022-11

2. Bile Pigment Metabolism and Its Disorders;Emery and Rimoin's Principles and Practice of Medical Genetics and Genomics;2020

3. Bilirubin Metabolism and Its Disorders;Zakim and Boyer's Hepatology;2018

4. The Rat;Animal Models in Toxicology, Third Edition;2015-07-09

5. New insights in bilirubin metabolism and their clinical implications;World Journal of Gastroenterology;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3