Regulating protein breakdown through proteasome phosphorylation

Author:

VerPlank Jordan J.S.1,Goldberg Alfred L.1

Affiliation:

1. Harvard Medical School, Boston, MA 02115, U.S.A.

Abstract

The ubiquitin proteasome system degrades the great majority of proteins in mammalian cells. Countless studies have described how ubiquitination promotes the selective degradation of different cell proteins. However, there is a small but growing literature that protein half-lives can also be regulated by post-translational modifications of the 26S proteasome. The present study reviews the ability of several kinases to alter proteasome function through subunit phosphorylation. For example, PKA (protein kinase A) and DYRK2 (dual-specificity tyrosine-regulated kinase 2) stimulate the proteasome's ability to degrade ubiquitinated proteins, peptides, and adenosine triphosphate, while one kinase, ASK1 (apoptosis signal-regulating kinase 1), inhibits proteasome function during apoptosis. Proteasome phosphorylation is likely to be important in regulating protein degradation because it occurs downstream from many hormones and neurotransmitters, in conditions that raise cyclic adenosine monophosphate or cyclic guanosine monophosphate levels, after calcium influx following synaptic depolarization, and during phases of the cell cycle. Beyond its physiological importance, pharmacological manipulation of proteasome phosphorylation has the potential to combat various diseases. Inhibitors of phosphodiesterases by activating PKA or PKG (protein kinase G) can stimulate proteasomal degradation of misfolded proteins that cause neurodegenerative or myocardial diseases and even reduce the associated pathology in mouse models. These observations are promising since in many proteotoxic diseases, aggregation-prone proteins impair proteasome function, and disrupt protein homeostasis. Conversely, preventing subunit phosphorylation by DYRK2 slows cell cycle progression and tumor growth. However, further research is essential to determine how phosphorylation of different subunits by these (or other) kinases alters the properties of this complex molecular machine and thus influence protein degradation rates.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Reference108 articles.

1. The ubiquitin system;Hershko;Annu. Rev. Biochem.,1998

2. Gates, channels, and switches: elements of the proteasome machine;Finley;Trends Biochem. Sci.,2016

3. Design principles of a universal protein degradation machine;Matyskiela;J. Mol. Biol.,2013

4. The logic of the 26S proteasome;Collins;Cell,2017

5. Mechanisms underlying ubiquitination;Pickart;Annu. Rev. Biochem.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3