Membrane protein extraction and purification using styrene–maleic acid (SMA) copolymer: effect of variations in polymer structure

Author:

Morrison Kerrie A.1,Akram Aneel1,Mathews Ashlyn1,Khan Zoeya A.1,Patel Jaimin H.1,Zhou Chumin1,Hardy David J.1,Moore-Kelly Charles2,Patel Roshani1,Odiba Victor1,Knowles Tim J.2,Javed Masood-ul-Hassan13,Chmel Nikola P.4,Dafforn Timothy R.2,Rothnie Alice J.1

Affiliation:

1. School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, U.K.

2. School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.

3. College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Kingdom of Saudi Arabia

4. Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, U.K.

Abstract

The use of styrene–maleic acid (SMA) copolymers to extract and purify transmembrane proteins, while retaining their native bilayer environment, overcomes many of the disadvantages associated with conventional detergent-based procedures. This approach has huge potential for the future of membrane protein structural and functional studies. In this investigation, we have systematically tested a range of commercially available SMA polymers, varying in both the ratio of styrene and maleic acid and in total size, for the ability to extract, purify and stabilise transmembrane proteins. Three different membrane proteins (BmrA, LeuT and ZipA), which vary in size and shape, were used. Our results show that several polymers, can be used to extract membrane proteins, comparably to conventional detergents. A styrene:maleic acid ratio of either 2:1 or 3:1, combined with a relatively small average molecular mass (7.5–10 kDa), is optimal for membrane extraction, and this appears to be independent of the protein size, shape or expression system. A subset of polymers were taken forward for purification, functional and stability tests. Following a one-step affinity purification, SMA 2000 was found to be the best choice for yield, purity and function. However, the other polymers offer subtle differences in size and sensitivity to divalent cations that may be useful for a variety of downstream applications.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3