Flavocytochrome P450 BM3: an update on structure and mechanism of a biotechnologically important enzyme

Author:

Warman A.J.1,Roitel O.1,Neeli R.1,Girvan H.M.1,Seward H.E.1,Murray S.A.1,McLean K.J.1,Joyce M.G.1,Toogood H.1,Holt R.A.2,Leys D.1,Scrutton N.S.1,Munro A.W.1

Affiliation:

1. Department of Biochemistry, University of Leicester, The Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, U.K.

2. Avecia Biotechnology, Belasis Avenue, Billingam, Cleveland TS23 1YN, U.K.

Abstract

Since its discovery in the 1980s, the fatty acid hydroxylase flavocytochrome P450 (cytochrome P450) BM3 (CYP102A1) from Bacillus megaterium has been adopted as a paradigm for the understanding of structure and mechanism in the P450 superfamily of enzymes. P450 BM3 was the first P450 discovered as a fusion to its redox partner – a eukaryotic-like diflavin reductase. This fact fuelled the interest in soluble P450 BM3 as a model for the mammalian hepatic P450 enzymes, which operate a similar electron transport chain using separate, membrane-embedded P450 and reductase enzymes. Structures of each of the component domains of P450 BM3 have now been resolved and detailed protein engineering and molecular enzymology studies have established roles for several amino acids in, e.g. substrate binding, coenzyme selectivity and catalysis. The potential of P450 BM3 for biotechnological applications has also been recognized, with variants capable of industrially important transformations generated using rational mutagenesis and forced evolution techniques. This paper focuses on recent developments in our understanding of structure and mechanism of this important enzyme and highlights important problems still to be resolved.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3