Differential effects of N-glycans on surface expression suggest structural differences between the acid-sensing ion channel (ASIC) 1a and ASIC1b

Author:

Kadurin Ivan1,Golubovic Andjelko1,Leisle Lilia1,Schindelin Hermann2,Gründer Stefan1

Affiliation:

1. Institute of Physiology II, University of Würzburg, Röntgenring 9, D-97070 Würzburg, Germany

2. Rudolf Virchow Center for Experimental Biomedicine and Institute of Structural Biology, University of Würzburg, Versbacher Strasse 9, D-97078 Würzburg, Germany

Abstract

ASICs (acid-sensing ion channels) are H+-gated Na+ channels with a widespread expression pattern in the central and the peripheral nervous system. ASICs have a simple topology with two transmembrane domains, cytoplasmic termini and a large ectodomain between the transmembrane domains; this topology has been confirmed by the crystal structure of chicken ASIC1. ASIC1a and ASIC1b are two variants encoded by the asic1 gene. The variable part of the protein includes the cytoplasmic N-terminus, the first transmembrane domain and approximately the first third of the ectodomain. Both variants contain two consensus sequences for N-linked glycosylation in the common, distal part of the ectodomain. In contrast with ASIC1a, ASIC1b contains two additional consensus sequences in the variable, proximal part of the ectodomain. Here we show that all the extracellular asparagine residues within the putative consensus sequences for N-glycosylation carry glycans. The two common distal glycans increase surface expression of the channels, but are no absolute requirement for channel activity. In sharp contrast, the presence of at least one of the two proximal glycans, which are specific to ASIC1b, is an absolute requirement for surface expression of ASIC1b. This result suggests substantial differences in the structure of the proximal ectodomain between the two ASIC1 variants.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3