Crystal structure of human dehydroepiandrosterone sulphotransferase in complex with substrate

Author:

REHSE Peter H.1,ZHOU Ming1,LIN Sheng-Xiang1

Affiliation:

1. Oncology and Molecular Endocrinology Research Center, Laval University Medical Center CHUL (CHUQ), 2705 Boul. Laurier, Quebec City, Quebec, G1V 4G2 Canada

Abstract

Dehydroepiandrosterone sulphotransferase (DHEA-ST) is an enzyme that converts dehydroepiandrosterone (DHEA), and some other steroids, into their sulphonated forms. The enzyme catalyses the sulphonation of DHEA on the 3α-oxygen, with 3′-phosphoadenosine-5′-phosphosulphate contributing the sulphate. The structure of human DHEA-ST in complex with its preferred substrate DHEA has been solved here to 1.99Å using molecular replacement with oestradiol sulphotransferase (37% sequence identity) as a model. Two alternative substrate-binding orientations have been identified. The primary, catalytic, orientation has the DHEA 3α-oxygen and the highly conserved catalytic histidine in nearly identical positions as are seen for the related oestradiol sulphotransferase. The substrate, however, shows rotations of up to 30°, and there is a corresponding rearrangement of the protein loops contributing to the active site. This may also reflect the low identity between the two enzymes. The second orientation penetrates further into the active site and can form a potential hydrogen bond with the desulphonated cofactor 3′,5′-phosphoadenosine (PAP). This second site contains more van der Waal interactions with hydrophobic residues than the catalytic site and may also reflect the substrate-inhibition site. The PAP position was obtained from the previously solved structure of DHEA-ST co-crystallized with PAP. This latter structure, due to the arrangement of loops within the active site and monomer interactions, cannot bind substrate. The results presented here describe details of substrate binding to DHEA-ST and the potential relationship to substrate inhibition.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3