Nitric oxide triggers mammary gland involution after weaning: remodelling is delayed but not impaired in mice lacking inducible nitric oxide synthase

Author:

Zaragozá Rosa1,Bosch Ana1,García Concha1,Sandoval Juan1,Serna Eva1,Torres Luís1,García-Trevijano Elena R.1,Viña Juan R.1

Affiliation:

1. Departamento de Bioquímica y Biología Molecular/Fundación Investigación Hospital Clínico Valencia, Facultad de Medicina, Universidad de Valencia, Avda. Blasco Ibáñez 15, E-46010 Valencia, Spain

Abstract

During mammary gland involution, different signals are required for apoptosis and tissue remodelling. To explore the role of NO in the involution of mammary tissue after lactation, NOS2 (inducible nitric oxide synthase)-KO (knockout) mice were used. No apparent differences were observed between NOS2-KO and WT (wild-type) animals during pregnancy and lactation. However, upon cessation of lactation, a notable delay in involution was observed, compared with WT mice. NOS2-KO mice showed increased phosphorylation of STAT (signal transducer and activator of transcription) 5 during weaning, concomitant with increased β-casein mRNA levels when compared with weaned WT glands, both hallmarks of the lactating period. In contrast, activation of STAT3, although maximal at 24 h after weaning, was significantly reduced in NOS2-KO mice. STAT3 and NF-κB (nuclear factor κB) signalling pathways are known to be crucial in the regulation of cell death and tissue remodelling during involution. Indeed, activation of both STAT3 and NF-κB was observed in WT mice during weaning, concomitant with an increased apoptotic rate. During the same period, less apoptosis, in terms of caspase 3 activity, was found in NOS2-KO mice and NF-κB activity was significantly reduced when compared with WT mice. Furthermore, the activation of the NF-κB signalling pathway is delayed in NOS2-KO mice when compared with WT mice. These results emphasize the role of NO in the fine regulation of the weaning process, since, in the absence of NOS2, the switching on of the cascades that trigger involution is hindered for a time, retarding apoptosis of the epithelial cells and extracellular matrix remodelling.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3