Extraction of peripheral proteins is accompanied by selective depletion of certain glycerophospholipid classes and changes in the phosphorylation pattern of acetylcholine-receptor-rich-membrane proteins

Author:

Bonini de Romanelli I C1,Roccamo de Fernández A M1,Barrantes F J1

Affiliation:

1. Instituto de Investigaciones Bioquimicas, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina.

Abstract

The widely used alkaline treatment of acetylcholine-receptor (AChR)-rich membranes from Torpedo marmorata (electric fish) and Discopyge tschudii (a marine ray) results not only in the extraction of non-receptor peripheral proteins but also in that of glycerophospholipids (approximately 13%). Minor acidic phospholipids, notably phosphatidic acid and polyphosphoinositides, are particularly enriched in the NaOH extracts. When electrocytes or receptor-rich membranes are incubated with [32P]Pi or [gamma-32P]ATP, polyphosphoinositides accumulate most of the label (approximately 45% in D. tschudii; 96% in T. marmorata) and exhibit the highest specific radioactivity. Furthermore, more than 50% of these phosphorylated lipids are extracted by NaOH together with the peripheral membrane proteins. NaOH treatment also results in modification of the phosphorylation pattern of AChR membrane proteins. Phosphorylation decreases in the Mr-43,000 group of peripheral proteins and in the gamma-subunit of the receptor. The results indicate that polyphosphoinositides constitute a metabolically very active lipid pool in the postsynaptic membrane, and that a substantial proportion of these phospholipids are preferentially released from the membrane together with other acidic phospholipids upon peripheral-protein extraction. The conclusion is drawn that membranes submitted to the above treatments can no longer be considered equivalent to native ones in terms of their phospholipid composition and phosphorylation characteristics.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3