Substrate-dependent utilization of the glycerol 3-phosphate or malate/aspartate redox shuttles by Ehrlich ascites cells

Author:

Grivell A R1,Korpelainen E I1,Williams C J1,Berry M N1

Affiliation:

1. Department of Medical Biochemistry, School of Medicine, The Flinders University of South Australia, G.P.O. Box 2100, Adelaide, South Australia, 5001, Australia

Abstract

The rate of transfer of reducing equivalents from cytoplasm to mitochondria has been examined in Ehrlich ascites tumour cells incubated in the presence of lactate. The flux of reducing equivalents was determined from the rate of metabolism of reduced intermediates that are oxidized within the cytosol. The magnitude of the flux of reducing equivalents was dependent on both the concentration of added lactate and the presence of carbohydrate. The rate of flux was twice as great in the presence of glucose and four times as high when glucose and lactate were added together as when lactate was the only added substrate. Fructose was less effective than glucose in stimulating reducing equivalent flux. In the presence of glucose or fructose, there was a substantial accumulation of hexose phosphates, dihydroxyacetone phosphate and glycerol 3-phosphate. Rotenone, an inhibitor of NADH dehydrogenase, and amino-oxyacetate, which inhibits the malate/aspartate shuttle, were powerful suppressors of reducing equivalent flux from lactate as sole substrate, but were much less potent in the presence of carbohydrate. Antimycin substantially inhibited reducing equivalent flux from all combinations of added substrates, consistent with its ability to block oxidation of reducing equivalents transferred by both the malate/aspartate and glycerol 3-phosphate shuttles. The glycerol 3-phosphate shuttle represents around 80% of the maximum total observed activity but is active only while glycolytic intermediates are present to provide the necessary substrates of the shuttle. This Ehrlich ascites cell line has an essentially similar total reducing equivalent shuttle capacity to that of isolated hepatocytes.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3