Transport and metabolism of galactose in rat kidney cortex

Author:

McNamara Pamela D.1,Segal Stanton1

Affiliation:

1. Division of Biochemical Development and Molecular Diseases, Children's Hospital of Philadelphia, and the Departments of Pediatrics and Medicine, Medical School of the University of Philadelphia, Philadelphia, Pa. 19146, U.S.A.

Abstract

1. Analysis of transport of d-galactose was complicated by metabolism of the compound but appeared to have two components: a substrate-saturable component and a diffusion component. At low substrate concentration (<1mm) active transport was observed. Accumulation of galactose was largely independent of Na+concentration. The apparent Km for this component was 0.2mm. At substrate concentrations above 1mm the active transport system appeared saturated and further increases in substrate concentration resulted in a linear increase in the rate of galactose accumulation, but no concentration gradient was formed. 2. d-[1-14C]Galactose (2mm) was metabolized to14CO2 by rat kidney-cortex slices incubated at 37°C, at the rate of 68nmol/h per 100mg of tissue. 3. Intracellular components from such incubations were separated into a neutral fraction, the only major labelled component being galactose, and a phosphorylated fraction. 4. Phosphorylated metabolites found in galactose-incubated slices increased with increasing substrate concentration and achieved a limiting value of 0.42mm after 60min of incubation. 5. Galactose uptake was inhibited by anaerobiosis, dinitrophenol and phlorrhizin. 6. Methyl α-d-glucoside and d-glucose partially inhibited galactose uptake only at ratios of 100:1. 7. The presence of pyruvate did not decrease galactose metabolism although it did decrease production of14CO2 from [1-14C]galactose. Gluconeogenesis occurred in the presence of pyruvate and14C from galactose was found in glucose. 8. Rat kidney-cortex slices metabolized 2mm-[1-14C]galactonate to14CO2 at a rate of 20nmol/h per 100mg of tissue.

Publisher

Portland Press Ltd.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3