Regulation of β-adrenoceptor density and mRNA levels in the rat heart cell-line H9c2

Author:

DANGEL Volker1,GIRAY Jeanette1,RATGE Dieter1,WISSER Hermann

Affiliation:

1. Department of Clinical Pathology, Robert Bosch Hospital, Auerbachstr. 110, D-70376 Stuttgart, Germany

Abstract

The regulation of the expression of β-adrenoceptors (β-ARs) is not thoroughly understood. We demonstrate that the rat heart cell-line H9c2 expresses both β1- and β2-ARs. In radioligand-binding experiments, the maximal binding capacity of (-)-[125I]-iodocyanopindolol was determined as 18±0.6 fmol/mg of protein with a KD of 35.4±4.1 pM. Competitive radioligand-binding experiments with subtype-specific β-antagonists reveal a subtype ratio of β1- to β2-ARs of 29%:71%. With competitive reverse-transcriptase PCR we found β2-mRNA to be up to 1600 times more frequent than β1-mRNA. Treatment of the H9c2 cell-line with the β-adrenergic agonist (-)-isoproterenol (10-6 M), the antagonist (-)-propranolol (10-6 M) and the glucocorticoid dexamethasone (500 nM) induces regulatory effects on both the β-AR protein and mRNA level. Isoproterenol treatment leads to down-regulation of the total receptor number by 56±4%, due to a decrease in β2-ARs, while maintaining the β1-AR number constant. On the transcription level, both β1-and β2-mRNAs are decreased by 30% and 42% respectively. mRNA stability measurements reveal a reduced half-life of β2-mRNA from 9.3 h to 6.5 h after isoproterenol treatment. Incubation of cells with (-)-propranolol does not affect the amounts of β-ARs and their mRNAs. Dexamethasone induces a 1.8±0.2-fold increase in β-AR number over the basal level as well as a 1.9±0.2-fold increase in the amount of β2-mRNA. Because the half-life of β2-mRNA was unaffected by dexamethasone, the increased β2-mRNA level must be due to an enhanced transcription rate. The β1-mRNA levels are unchanged during dexamethasone-incubation of the cells. Our data clearly demonstrate that treatment of H9c2 rat heart cells with isoproterenol and dexamethasone induces alterations in the level of RNA stability as well as gene transcription, leading to altered receptor numbers.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3