Chronic HgCl2 treatment increases vasoconstriction induced by electrical field stimulation: role of adrenergic and nitrergic innervation

Author:

Blanco-Rivero Javier12,Furieri Lorena B.34,Vassallo Dalton V.4,Salaices Mercedes34,Balfagón Gloria12

Affiliation:

1. Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain

2. Instituto de Investigación Sanitaria (IdiPAZ), Hospital Universitario ‘La Paz’, Madrid, Spain

3. Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain

4. Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Vitória, ES, Brazil

Abstract

In the present study, we have investigated the possible changes in rat mesenteric artery vascular innervation function caused by chronic exposure to low doses of HgCl2 (mercuric chloride), as well as the mechanisms involved. Rats were divided into two groups: (i) control, and (ii) HgCl2-treated rats (30 days; first dose, 4.6 μg/kg of body weight; subsequent dose, 0.07 μg·kg−1 of body weight·day−1, intramuscularly). Vasomotor response to EFS (electrical field stimulation), NA (noradrenaline) and the NO donor DEA-NO (diethylamine NONOate) were studied, nNOS (neuronal NO synthase) and phospho-nNOS protein expression were analysed, and NO, O2− (superoxide anion) and NA release were also determined. EFS-induced contraction was higher in the HgCl2-treated group. Phentolamine (1 μmol/l) decreased the response to EFS to a greater extent in HgCl2-treated rats. HgCl2 treatment increased vasoconstrictor response to exogenous NA and NA release. L-NAME (NG-nitro-L-arginine methyl ester; 0.1 mmol/l) increased the response to EFS in both experimental groups, but the increase was greater in segments from control animals. HgCl2 treatment decreased NO release and increased O2− production. Vasodilator response to DEA-NO was lower in HgCl2-treated animals. Tempol increased DEA-NO-induced relaxation to a greater extent in HgCl2-treated animals. nNOS expression was similar in arteries from both experimental groups, whereas phospho-nNOS was decreased in segments from HgCl2-treated animals. HgCl2 treatment increased vasoconstrictor response to EFS as a result of, in part, reduced NO bioavailability and increased adrenergic function. These findings offer further evidence that mercury, even at low concentrations, is an environmental risk factor for cardiovascular disease.

Publisher

Portland Press Ltd.

Subject

General Medicine

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3