An aminoquinazoline inhibitor of the essential bacterial cell wall synthetic enzyme GlmU has a unique non-protein-kinase-like binding mode

Author:

Larsen Nicholas A.1,Nash Tory J.2,Morningstar Marshall2,Shapiro Adam B.2,Joubran Camil2,Blackett Carolyn J.3,Patten Arthur D.2,Boriack-Sjodin P. Ann1,Doig Peter1

Affiliation:

1. Discovery Sciences Unit, AstraZeneca R&D Boston, Waltham, MA 02451, U.S.A.

2. Infection Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, MA 02451, U.S.A.

3. Discovery Sciences Unit, AstraZeneca UK, Alderley Park, Macclesfield, Chesire SK10 4TG, U.K.

Abstract

GlmU is a bifunctional enzyme with acetyltransferase and uridyltransferase activities, and is essential for the biosynthesis of the bacterial cell wall. Inhibition results in a loss of cell viability. GlmU is therefore considered a potential target for novel antibacterial agents. A HTS (high-throughput screen) identified a series of aminoquinazolines with submicromolar potency against the uridyltransferase reaction. Biochemical and biophysical characterization showed competition with UTP binding. We determined the crystal structure of a representative aminoquinazoline bound to the Haemophilus influenzae isoenzyme at a resolution of 2.0 Å. The inhibitor occupies part of the UTP site, skirts the outer perimeter of the GlcNAc1-P (N-acetylglucosamine-1-phosphate) pocket and anchors a hydrophobic moiety into a lipophilic pocket. Our SAR (structure–activity relationship) analysis shows that all of these interactions are essential for inhibitory activity in this series. The crystal structure suggests that the compound would block binding of UTP and lock GlmU in an apo-enzyme-like conformation, thus interfering with its enzymatic activity. Our lead generation effort provides ample scope for further optimization of these compounds for antibacterial drug discovery.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3