Characterization of the regulatory regions in the human desmoglein genes encoding the pemphigus foliaceous and pemphigus vulgaris antigens

Author:

ADAMS J. Michael1,REICHEL B. Martin2,KING A. Ian1,MARSDEN D. Mark1,GREENWOOD D. Matthew1,THIRLWELL Hilary1,ARNEMANN Joachim3,BUXTON S. Roger1,ALI R. Robin2

Affiliation:

1. Division of Membrane Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, U.K.

2. Department of Molecular Genetics, Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, U.K.

3. Institut für Humangenetik, Universitätsklinik, Theodor-Stern-Kai 7, Haus 9, D-60590 Frankfurt/M., Germany

Abstract

The adhesive proteins in the desmosome type of cell junction consist of two members of the cadherin superfamily, the desmogleins and desmocollins. Both desmogleins and desmocollins occur as at least three different isoforms with various patterns of expression. The molecular mechanisms controlling the differential expression of the desmosomal cadherin isoforms are not yet known. We have begun an investigation of desmoglein gene expression by cloning and analysing the promoters of the human genes coding for the type 1 and type 3 desmogleins (DSG1 and DSG3). The type 1 isoform is restricted to the suprabasal layers of the epidermis and is the autoantigen in the autoimmune blistering skin disease pemphigus foliaceous. The type 3 desmoglein isoform is also expressed in the epidermis, but in lower layers than the type 1 isoform, and is the autoantigen in pemphigus vulgaris. Phage ƛ genomic clones were obtained containing 4.2 kb upstream of the translation start site of DSG1 and 517 bp upstream of the DSG3 start site. Sequencing of 660 bp upstream of DSG1 and 517 bp upstream of DSG3 revealed that there was no obvious TATA box, but a possible CAAT box was present at -238 in DSG1 and at -193 in DSG3 relative to the translation start site. Primer extension analysis and RNase protection experiments revealed four putative transcription initiation sites for DSG1 at positions -163, -151, -148 and -141, and seven closely linked sites for DSG3, the longest being at -140 relative to the translation start site. The sequences at these possible sites at -166 to -159 in DSG1 (TTCAGTCC) and at -124 to -117 in DSG3 (CTTAGACT) have some similarity to the initiator sequence (CTCANTCT) described for a TATA-less promoter often from -3 to +5, and the true transcription initiator site might therefore be the A residue in these sequences. There were two regions of similarity between the DSG1 and DSG3 promoters just upstream of the transcription initiation sites, of 20 and 13 bp, separated by 41 bp in DSG1 and 36 bp in DSG3. The significance of these regions of similarity remains to be elucidated, but the results suggest that they represent a point at which these two desmoglein genes are co-ordinately regulated. Analysis of the upstream sequences revealed GC-rich regions and consensus binding sites for transcription factors including AP-1 and AP-2. Exon boundaries were conserved compared with the classical cadherin E-cadherin, but the equivalent of the second cadherin intron was lacking. A 4.2 kb region of the human DSG1 promoter sequence was linked to the lacZ gene reporter gene in such a way that there was only one translation start site, and this construct was used to generate transgenic mice. We present the first transgenic analysis of a promoter region taken from a desmosomal cadherin gene. Our results suggest that the 4.2 kb upstream region of DSG1 does not contain all the regulatory elements necessary for correct expression of this gene but might have elements that regulate activity during hair growth.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Loss-of-function variants in KLF4 underlie autosomal dominant palmoplantar keratoderma;Genetics in Medicine;2022-05

2. Desmosomes as Signaling Hubs in the Regulation of Cell Behavior;Frontiers in Cell and Developmental Biology;2021-09-23

3. Desmosomal Cadherins;The Cadherin Superfamily;2016

4. 150th Anniversary Series: Desmosomes and the Hallmarks of Cancer;Cell Communication & Adhesion;2015-01-02

5. Desmosomal Adhesion In Vivo;Cell Communication & Adhesion;2014-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3