Variable effects of maturity-onset-diabetes-of-youth (MODY)-associated glucokinase mutations on substrate interactions and stability of the enzyme

Author:

Liang Y1,Kesavan P1,Wang L Q1,Niswender K2,Tanizawa Y3,Permutt M A3,Magnuson M A2,Matschinsky F M1

Affiliation:

1. Department of Biochemistry and Biophysics and the Diabetes Research Center, University of Pennsylvania, Philadelphia, PA 19104, U.S.A.

2. Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, TN 37232, U.S.A.

3. Metabolism Division, Washington University School of Medicine, St. Louis, MO 63110, U.S.A.

Abstract

Mutations in the human glucokinase (GK) gene are thought to cause maturity-onset diabetes of youth (MODY) by leading to the production of enzymes with reduced catalytic activities and increased glucose Km values. However, in some cases the diabetic phenotype is more severe than might be predicted from these apparent kinetic effects alone. To determine whether these mutations might also effect other characteristics of the enzyme, nine MODY-associated mutants were expressed as fusion proteins with Schistosoma japonicum glutathione S-transferase (GST) and compared with three wild-type human GK isoforms that were also expressed in the same manner. Three GST-GK isoforms (liver 1, liver 2 and islet) were kinetically indistinguishable from each other and from purified rat liver GK. Noteworthy is a glucose-induced fit effect for the interaction of trinitrophenyl (TNP)-ATP with GST-GK, whereby glucose significantly increased the affinity of TNP-ATP binding to GST-GK without changing the stoichiometry of binding. The nine MODY-associated mutations studied either showed diminished catalytic activity, substrate affinities, allosteric regulation, or stability of the fusion enzyme. We conclude that: (1) Gly261 and Lys414 are important for ATP binding; (2) Val203 may be essential for a glucose-induced fit effect; and (3) the stability of fusion protein may be significantly reduced when Glu300 is replaced by Lys. These results suggest that, in addition to effects on the Km and Vmax. of GK, a decrease in the ATP-binding affinity or stability of the mutated enzyme may also contribute to a reduction of GK activity in individuals with GK-MODY. In the B-cell this would have the effect of blunting glucose-stimulated insulin release, thereby contributing to the diabetic phenotype.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3