Identification of lysine residues critical for the transcriptional activity and polyubiquitination of the NF-κB family member RelB

Author:

Leidner Julia1,Palkowitsch Lysann1,Marienfeld Uta1,Fischer Dietmar2,Marienfeld Ralf1

Affiliation:

1. Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany

2. Institute of Experimental Neurology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany

Abstract

RelB is the key component of the alternative NF-κB (nuclear factor κB) signalling pathway. However, RelB exerts also a negative effect via the recruitment of a DNMT1 (DNA methyltransferase 1)–Daxx (death domain-associated protein) complex to NF-κB target genes. Importantly, the molecular mechanisms which determine the functions of RelB are still largely unknown. In the present study, we aimed to analyse whether ubiquitination of RelB might be involved in the regulation of RelB. Indeed, RelB is constitutively polyubiquitinated in the B-cell lines Namalwa and 70Z/3. Although a PMA+ionomycin-induced augmentation of RelB polyubiquitination was linked to its proteasomal degradation in B-cells, the constitutive RelB polyubiquitination seems to affect non-proteasomal functions. Consistently, a significant RelB polyubiquitination in HEK (human embryonic kidney)-293 cells correlated with an augmentation of the transcriptional activity of RelB. Yet, neither nuclear localization nor DNA binding was enhanced by RelB polyubiquitination. Interestingly, basal RelB polyubiquitination depends neither on Lys48 nor on Lys63 conjugates, but might involve unconventional ubiquitin conjugates. Mapping of the ubiquitination target sites in RelB revealed the existence of various lysine residues, which serve as ubiquitination acceptors. However, only the substitution of Lys273/274 and Lys305/308 significantly decreased the basal RelB activity and the ubiquitin-induced augmentation of the RelB activity. Collectively, these results imply a dual role of RelB polyubiquitination for the stability and activity of this transcription factor.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3