Neuroendocrine and Cardiac Metabolic Dysfunction and NLRP3 Inflammasome Activation in Adipose Tissue and Pancreas following Chronic Spinal Cord Injury in the Mouse

Author:

Bigford Gregory E.1,Bracchi-Ricard Valerie C.1,Keane Robert W.2,Nash Mark S.134,Bethea John R.135

Affiliation:

1. The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, U.S.A.

2. Department of Physiology, University of Miami Miller School of Medicine, Miami, FL, U.S.A

3. Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.

4. Department of Rehabilitation Medicine, University of Miami Miller School of Medicine, Miami, FL, U.S.A.

5. Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, U.S.A.

Abstract

CVD (cardiovascular disease) represents a leading cause of mortality in chronic SCI (spinal cord injury). Several component risk factors are observed in SCI; however, the underlying mechanisms that contribute to these risks have not been defined. Central and peripheral chronic inflammation is associated with metabolic dysfunction and CVD, including adipokine regulation of neuroendocrine and cardiac function and inflammatory processes initiated by the innate immune response. We use female C57 Bl/6 mice to examine neuroendocrine, cardiac, adipose and pancreatic signaling related to inflammation and metabolic dysfunction in response to experimentally induced chronic SCI. Using immunohistochemical, -precipitation, and -blotting analysis, we show decreased POMC (proopiomelanocortin) and increased NPY (neuropeptide-Y) expression in the hypothalamic ARC (arcuate nucleus) and PVN (paraventricular nucleus), 1-month post-SCI. Long-form leptin receptor (Ob-Rb), JAK2 (Janus kinase)/STAT3 (signal transducer and activator of transcription 3)/p38 and RhoA/ROCK (Rho-associated kinase) signaling is significantly increased in the heart tissue post-SCI, and we observe the formation and activation of the NLRP3 (NOD-like receptor family, pyrin domain containing 3) inflammasome in VAT (visceral adipose tissue) and pancreas post-SCI. These data demonstrate neuroendocrine signaling peptide alterations, associated with central inflammation and metabolic dysfunction post-SCI, and provide evidence for the peripheral activation of signaling mechanisms involved in cardiac, VAT and pancreatic inflammation and metabolic dysfunction post-SCI. Further understanding of biological mechanisms contributing to SCI-related inflammatory processes and metabolic dysfunction associated with CVD pathology may help to direct therapeutic and rehabilitation countermeasures.

Publisher

SAGE Publications

Subject

Clinical Neurology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3