Deriving statistical models for predicting peptide tandem MS product ion intensities

Author:

Schütz F.1,Kapp E.A.2,Simpson R.J.2,Speed T.P.1

Affiliation:

1. Division of Genetics and Bioinformatics, The Walter and Eliza Hall Institute of Medical Research, Parkville 3050, Victoria, Australia

2. Joint Proteomics Laboratory, Ludwig Institute for Cancer Research and The Walter and Eliza Hall Institute of Medical Research, Parkville 3050, Victoria, Australia

Abstract

Improved search algorithms and scoring functions are required before the identification of peptide tandem MS data can be considered to be fully reliable and automatable. The development of models that can accurately predict product ion spectra from a peptide sequence would certainly help achieve this goal, but this firstly requires a better understanding of the process of fragmentation of peptides in the gas-phase. We summarize recent developments in this area and show that the prediction of product ion spectra is feasible and should improve the identification of peptide tandem MS data, especially for peptides that currently give low or insignificant scores with current search algorithms.

Publisher

Portland Press Ltd.

Subject

Biochemistry

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3