Membrane protein secretases

Author:

HOOPER Nigel M.1,KARRAN Eric H.12,TURNER Anthony J.1

Affiliation:

1. Department of Biochemistry and Molecular Biology, The University of Leeds, Leeds LS2 9JT, U.K.

2. Molecular Neuropathology, SmithKline Beecham Pharmaceuticals, Harlow CM19 5AW, U.K.

Abstract

A diverse range of membrane proteins of Type I or Type II topology also occur as a circulating, soluble form. These soluble forms are often derived from the membrane form by proteolysis by a group of enzymes referred to collectively as ‘secretases‘ or ‘sheddases’. The cleavage generally occurs close to the extracellular face of the membrane, releasing physiologically active protein. This secretion process also provides a mechanism for down-regulating the protein at the cell surface. Examples of such post-translational proteolysis are seen in the Alzheimer's amyloid precursor protein, the vasoregulatory enzyme angiotensin converting enzyme, transforming growth factor-α, the tumour necrosis factor ligand and receptor superfamilies, certain cytokine receptors, and others. Since the proteins concerned are involved in pathophysiological processes such as neurodegeneration, apoptosis, oncogenesis and inflammation, the secretases could provide novel therapeutic targets. Recent characterization of these individual secretases has revealed common features, particularly sensitivity to certain metalloprotease inhibitors and up-regulation of activity by phorbol esters. It is therefore likely that a closely related family of metallosecretases controls the surface expression of multiple integral membrane proteins. Current knowledge of the various secretases are compared in this Review, and strategies for cell-free assays of such proteases are outlined as a prelude to their ultimate purification and cloning.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3