Formation of the l-cysteine-glyoxylate adduct is the mechanism by which l-cysteine decreases oxalate production from glycollate in rat hepatocytes

Author:

Baker P W1,Bais R1,Rofe A M1

Affiliation:

1. Division of Clinical Biochemistry, Institute of Medical and Veterinary Science, Frome Road, Adelaide, South Australia 5000, Australia

Abstract

Formation of thiazolidine-2,4-dicarboxylic acid, the L-cysteine-glyoxylate adduct, is the putative mechanism by which L-cysteine reduces hepatic oxalate production from glycollate [Bais, Rofe and Conyers (1991) J. Urol. 145, 1302-1305]. This was investigated in isolated rat hepatocytes by the simultaneous measurement of both adduct and oxalate formation. Different diastereoisomeric ratios of cis- and trans-adduct were prepared and characterized to provide both standard material for the enzymic analysis of adduct in hepatocyte supernatants and to investigate the stability and configuration of the adduct under physiological conditions. In the absence of L-cysteine, hepatocytes produced oxalate from 2 mM glycollate at a rate of 822 +/- 42 nmol/30 min per 10(7) cells. The addition of L-cysteine to the incubation medium at 1.0, 2.5 and 5.0 mM lowered oxalate production by 14 +/- 2, 25 +/- 3 (P < 0.05) and 38 +/- 3% (P < 0.01) respectively. These reductions were accompanied by almost stoichiometric increases in the levels of the adduct: 162 +/- 6, 264 +/- 27 and 363 +/- 30 nmol/30 min per 10(7) cells. Adduct formation is therefore confirmed as the primary mechanism by which L-cysteine decreases oxalate production from glycollate. As urinary oxalate excretion is a prime risk factor in the formation of calcium oxalate stones, any reduction in endogenous oxalate production is of clinical significance in the prevention of this formation.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3