Pullulanase synthesis in Klebsiella (Aerobacter) aerogenes strains growing in continuous culture

Author:

Hope G. C.1,Dean A. C. R.1

Affiliation:

1. Physical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, U.K.

Abstract

1. Pullulanase synthesis was studied in 16 classified (N.C.I.B.) strains and in an industrial strain (R) of Klebsiella aerogenes grown in chemostats containing maltose as inducer and sole carbon source. 2. Maximum synthesis was associated with carbon-limited growth at a low dilution rate (about 0.2h-1). The enzyme remained firmly cell-bound and seemed to be located on the cell surface. 3. Three strains had high activity (R, N.C.I.B. 5938, 8017), twelve were intermediate, and two (N.C.I.B. 8153, 9146) had negligible activity but were inducible with pullulan. 4. Pullulan similarly induced low, but adequate, activity in the other strains in conditions (nutrient limitation other than carbon-limitation) in which pullulanase was otherwise very seriously repressed. Nevertheless, in carbon limitation pullulan induced no more enzyme than did maltose, maltotriose or oligosaccharide mixtures, and ‘hyperactivity’ never developed on protracted culture. 5. Cyclic AMP relieved the transient repression produced by adding glucose to maltose-limited cultures and a further change to glucose-limited conditions led to constitutive pullulanase synthesis. 6. Amylomaltase and α-glucosidase activities were also examined but in less detail. 7. The presence of pullulanase in maltose-limited growth is discussed, but no clear function can be assigned to it at present. The molar growth yields for all the strains were very similar, and no correlation was found between the overgrowth of one strain by another and pullulanase activity. Further, any function as a general branching enzyme in polysaccharide synthesis seems unlikely.

Publisher

Portland Press Ltd.

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3