Constant and variable domains of different disaccharide structure in corneal keratan sulphate chains

Author:

Oeben M1,Keller R1,Stuhlsatz H W1,Greiling H1

Affiliation:

1. Department of Clinical Chemistry and Pathobiochemistry, Medical Faculty, Aachen University of Technology (RWTH Aachen), Federal Republic of Germany.

Abstract

Four peptidokeratan sulphate fractions of different Mr and degree of sulphation were cut from the pig corneal keratan sulphate distribution spectrum. After exhaustive digestion with keratanase, the fragments were separated on DEAE-Sephacel and Bio-Gel P-10 and analysed for their Mr, degree of sulphation and amino sugar and neutral sugar content. It was found that every glycosaminoglycan chain is constructed of a constant domain of non-sulphated and monosulphated disaccharide units and a variable domain of disulphated disaccharide units. Total neuraminic acid of the four peptidokeratan sulphates was recovered from their isolated linkage-region oligosaccharides. In kinetic studies, the four peptidokeratan sulphates were investigated for Mr distribution after various incubation times with keratanase. There was a continuous shift towards lower Mr and no appearance of a distinct intermediate-sized product at any degradation time. The linkage-region oligosaccharide was already being liberated after a very short incubation period. From the results of these kinetic investigations in connection with the results of neuraminic acid analyses it is suggested that there exists only one disaccharide chain per peptidokeratan sulphate molecule. A model of corneal keratan sulphate is postulated. One of the alpha-mannose residues in the linkage region is bound to an oligosaccharide consisting of a lactosamine and a terminal sialic acid. The other alpha-mannose residue is attached to the disaccharide chain. This chain contains one or two non-sulphated disaccharide units at the reducing end, followed by 10-12 monosulphated disaccharide units. The disulphated disaccharide moiety of variable length is positioned at the non-reducing end of the chain.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3