Physicochemical modifications of lysosomal hydrolases during intracellular transport

Author:

Goldstone Alfred1,Koenig Harold1

Affiliation:

1. Neurology Service, Veterans Administration Research Hospital, and Departments of Neurology and Biochemistry, Northwestern University Medical School, Chicago, Ill. 60611, U.S.A.

Abstract

1. The following fractions were prepared from rat kidney and characterized ultrastructurally, biochemically and enzymically: (a) an ordinary rough microsomal (RM1) fraction; (b) a special rough microsomal (RM2) fraction enriched seven- to nine-fold in acid hydrolases over the homogenate; (c) a smooth microsomal (SM) fraction; (d) a Golgi (GM) fraction enriched 2.5-fold in acid hydrolases and 10-, 15- and 20-fold in sialyltransferase, N-acetyl-lactosamine synthetase and galactosyltransferase respectively; (e) a lysosomal (L) fraction enriched 15- to 23-fold in acid hydrolases. The frequency of Golgi sacs and tubules seen in the electron microscope and the specific activity of the three glycosyltransferases in these fractions increased in the order: RM2<RM1<SM<GM. 2. Five lysosomal hydrolases, acid phosphatase, β-N-acetyl-hexosaminidase, β-galactosidase, β-glucuronidase and arylsulphatase, were characterized in these fractions with respect to (a) solubility on freeze–thawing and (b) electrophoretic mobility in polyacrylamide gels. 3. In the RM2 fraction each of these hydrolases occurred largely or exclusively as a single bound basic form coincident with cationic glycoprotein bands in gels (Goldstone et al., 1973). 4. In the L fraction these hydrolases were present largely as soluble, acidic (anionic) forms. 5. The solubility, electrophoretic heterogeneity and anodic mobility of these hydrolases increased progressively in subcellular fractions in the order: RM2<RM1<SM<GM<L. 6. These findings, together with evidence cited in the text showing that N-acetylneuraminic acid residues are responsible for the solubility and electronegative charge of these acidic forms and incorporation of these residues into the Golgi apparatus, support the following scheme for the biosynthesis of lysosomal enzymes. Each hydrolase is synthesized as a bound basic glycoprotein enzyme in a restricted portion of the rough endoplasmic reticulum. The soluble, acidic forms are generated as the nascent glycoprotein enzymes migrate through the Golgi apparatus through the attachment of sugar sequences containing N-acetylneuraminic acid.

Publisher

Portland Press Ltd.

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Functional Ultrastructure of the Proximal Tubule;Comprehensive Physiology;1992-12

2. Variation in the isoenzymes ofN-acetyl-β-D-glucosaminidase and protein excretion in aminoglycoside nephrotoxicity in the rat;Cell Biochemistry and Function;1991-07

3. Purification and characterization of different “acid” β-galactosidases from sheep kidney;Comparative Biochemistry and Physiology Part B: Comparative Biochemistry;1991-01

4. Kidney lysosomes;International Journal of Biochemistry;1989-01

5. Purification and Characterization of Acid β-D-Galactosidase from Rabbit Spleen;The Journal of Biochemistry;1988-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3