Free-oligosaccharide control in the yeast Saccharomyces cerevisiae: roles for peptide:N-glycanase (Png1p) and vacuolar mannosidase (Ams1p)

Author:

CHANTRET Isabelle1,FRÉNOY Jean-Pierre1,MOORE Stuart E. H.1

Affiliation:

1. Glycobiologie et Signalisation Cellulaire, INSERM U504, Bâtiment INSERM, 16 avenue Paul Vaillant-Couturier, 94807 Villejuif Cedex, France

Abstract

Free oligosaccharides (fOS) are generated during glycoprotein biosynthesis in mammalian cells. Here we report on the origin and fate of these structures in the yeast Saccharomyces cerevisiae. After metabolic radiolabelling with [2−3H]mannose ([2−3H]Man) for 30 min, Man8GlcNAc2 was identified as the predominant fOS in this organism, and radioactivity associated with this structure was found to correspond to ≈1% of that associated with the same structure N-linked to glycoprotein. Despite provoking a fourfold increase in radioactivity associated with lipid-linked oligosaccharide, the protein-synthesis inhibitor cycloheximide blocked [2−3H]Man incorporation into both endo-β-d-N-acetylglucosamine H-sensitive N-glycans and fOS. Peptide:N-glycanase, encoded by the PNG1 gene, was found to be required for the generation of a large proportion of yeast fOS during, and soon after, protein glycosylation. Use of an ams1Δ strain deficient in the vacuolar α-mannosidase revealed this enzyme to be responsible for the slow growth-associated catabolism of fOS. The present paper constitutes the first description of fOS formation in intact S. cerevisiae, and, with the demonstration that fOS are degraded by the vacuolar mannosidase, a novel function for this poorly understood enzyme has been identified.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3