Topology and quaternary structure of pro-sucrase/isomaltase and final-form sucrase/isomaltase

Author:

Cowell G M,Tranum-Jensen J,Sjöström H,Norén O

Abstract

Pig sucrase/isomaltase (EC 3.2.1.48/10) was purified from intestinal microvillar vesicles prepared from animals with and without pancreatic-duct ligation to obtain the single-chain pro form and the proteolytically cleaved final form respectively. The purified enzymes were re-incorporated into phosphatidylcholine vesicles and analysed by electron microscopy after negative staining. The two forms of the enzyme were observed as identical series of characteristic projected views that could be unified in a single dimeric model, containing two sucrase and two isomaltase units. This shows a homodimeric functional organization similar to that of other microvillar hydrolases. The bulk of the dimer was separated from the membrane by a maximal gap of 3.5 nm, representing a junctional segment connecting the intramembrane section of the anchor to the catalytically active domain of sucrase/isomaltase. The enzyme complex protrudes from the membrane for a distance of up to 17 nm. From charge-shift immunoelectrophoresic studies of hydrophilic prosucrase/isomaltase and from electron microscopy of reconstituted pro-sucrase/isomaltase, there was no evidence to suggest the presence of anchoring sequences between the sucrase and isomaltase subunits.

Publisher

Portland Press Ltd.

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3